PHYSICAL REVIEW E

VOLUME 51, NUMBER 5

MAY 1995

Numerical evaluation of the permeability and the Kozeny constant
for two types of porous media

Anton W.J. Heijs
Winand Staring Centre for Integrated Land, Soil and Water Research (SC-DLO),
P.O. Bozx 125, 6700 AC Wageningen, The Netherlands
and Wageningen Agricultural University, Department of Soil Science and Geology,
P.O. Boz 37, 6700 AA Wageningen, The Netherlands

Christopher P. Lowe*
Fundamenteel Onderzoek der Materie—Institute for Atomic and Molecular Physics,
Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
(Received 31 October 1994)

Using the lattice-Boltzmann method we have calculated the permeability of a random array of
spheres and a clay soil. We have determined the structure of the clay soil by computed tomography
imaging. As observed experimentally, the semiempirical Carman-Kozeny equation gives a good
estimate for the permeability of the random array of spheres. For the soil sample, our calculated

value of the permeability is consistent with experimental values.

The Carman-Kozeny equation

provides a much less successful estimate for the permeability of the soil than the random spheres.

PACS number(s): 47.11.4j, 47.15.Gf, 47.55.Mh, 87.59.Fm

INTRODUCTION

The quantitative prediction of the flow of viscous flu-
ids through microscopically disordered porous media is
important for many problems in science and technology.
For instance, knowledge of flow through a porous mate-
rial is required for a good understanding of problems of
oil recovery, the flow of groundwater, and the sedimen-
tation of polymers. Here we present a study of another
problem of considerable importance: the saturated flow
of water in soil. To be suitable for agricultural use the
soil must have sufficiently high permeability to prevent
waterlogging. It must also have a sufficiently low perme-
ability to retain moisture and thus permit plant growth.
A starting point for studying these systems is Darcy’s
law [1], which says that as long as we consider saturated
flow at a low Reynolds number, the mean flow rate (u) of
a viscous fluid through a porous medium of length L is
proportional to the applied pressure difference AP and
inversely proportional to the viscosity 7. The permeabil-
ity k is the constant of proportionality, so

kAP
W= 1)

For Darcy’s law to be of quantitative value we need
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to know a value for the permeability. An examina-
tion of Eq. (1) shows that the permeability has units
of length squared. On the reasonable assumption that
this length will be something typical of the system un-
der study, it is clear that permeability is a quantity that
can vary hugely: from the order of millimeters squared
for a gravel to values of order 107'* mm? for a granite
[2]. In principle, computing the permeability of a given
medium is straightforward; if one knows the structure
of the medium, it is possible to solve the Navier-Stokes
equations, which describe fluid flow through the medium.
Having determined the steady-state velocity field for a
given pressure gradient one then has the mean flow ve-
locity and hence the permeability. Unfortunately neither
of these two steps is necessarily easy. Most porous me-
dia of practical interest have extremely complex three-
dimensional geometries that are difficult to determine in
detail. Given that some way can be found of determin-
ing the geometry of the solid matrix, solving the Navier-
Stokes equations in the presence of highly irregular solid-
fluid boundaries has proved to be a nontrivial problem.
Our aim here is to describe the results of numerical eval-
uations of k obtained by solving directly for the flow in a
realistic representation of a porous medium. To place this
work in context we begin by discussing other approaches
that have been applied to the problem, all of which fall
short of a complete determination of the matrix geometry
and flow fields.

One possible approach is to apply the simple Carman-
Kozeny equation [3]. This equation is based on a simple
scaling argument. It relates the permeability to the sur-
face area per unit volume S and the solid volume fraction

¢ as
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where co is a constant generally given the value ¢y =
5. The reason we refer to this equation as the “simple”
Carman-Kozeny equation is because the quantity S could
be considered to be some appropriate length scale, which
we have then defined to be the specific surface area. This
definition is of course neither unique nor necessarily the
most appropriate [18]. It is, however, particularly conve-
nient because the problem of calculating k now reduces
to determining S and ¢. Both of these quantities can
be measured from an image of a porous media (or by
other experimental methods). In principle this is very
useful because it removes the necessity of solving for the
fluid flow through the medium. Unfortunately Eq. (2)
applies only under certain circumstances. Philipse et al.
have shown that Eq. (2) is valid for random packings of
spheres, both monodisperse [4] and bidisperse [5]. Equa-
tion (2) also predicts the permeability of periodic arrays
of spheres to within 15% at high values of ¢ [6]. Lemaitre
and Adler [7] compared values of the permeability cal-
culated from the simple Carman-Kozeny equation with
values they obtained by solving numerically for the flow
through various fractal porous media. The porous me-
dia themselves were generated by computer. They again
found that the simple Carman-Kozeny equation gave rea-
sonable results at high values of ¢.

There is, then, evidence in the literature that Eq. (2)
can be used to calculate k. The problem is that one can
easily show that there are circumstances in which the
simple Carman-Kozeny equation cannot be correct. For
instance, it takes no account of connectivity. A porous
medium that has no connected path of free space still has
some permeability, according to Eq. (2). Of course its
permeability is actually zero. A second objection one can
raise is that the value of the specific surface area can be
increased by making the solid surface progressively more
complex. The simple Carman-Kozeny equation predicts
a corresponding decrease in the permeability. However,
if a second porous medium can be constructed from an-
other, purely by the removal of some material, the perme-
ability of this second medium cannot be lower than that
of the first [8]. Again, in this respect the simple Carman-
Kozeny equation is demonstrably wrong. This latter con-
sideration has been discussed by Berryman and Blair [9].
The solid surface of a porous medium is typically com-
plex, often fractal in nature [10,11]. If we analyze a high
resolution image, they suggest that the measured value
of § will be too high to use in Eq. (2). An appropriate
value of S is derived from a more coarse grained image,
which effectively blurs out unwanted surface detail and
provides a value of S appropriate for use in Eq. (2).
An alternative route for extracting the permeability of a
porous medium from its image is that applied by Koplik
and Lasseter [12]. They took serial sections of a sand-
stone and constructed an equivalent random network of
the pore space. Using an effective-medium approxima-
tion they then calculated values of k. These, however,
differed from measured values by an order of magnitude.
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A similar calculation performed by Doyen [13] gave re-
sults in better agreement with experiment.

An alternative approach to calculating the permeabil-
ity is to approximate the geometry of the pore space
as a collection of objects for which the solution to the
Navier-Stokes equations is known, typically tubes. This
approach has been applied by Bryant et al. [14,15]. They
constructed a tube model of a random packing of ball-
bearings. Solving for the permeability of the resulting
network they obtained good agreement with experimen-
tal values (and were also able to extend the calculation
to the case of unsaturated flow). However, as we noted
above, the simple Carman-Kozeny equation is valid for
this type of system. The pore space is connected and
the surface of the spheres is smooth, so neither of the
two principal objections apply. Thus obtaining the cor-
rect value of k only involves specifying S and ¢ correctly.
There is no guarantee that the flow itself is accurately
reproduced or that the method will apply to more com-
plex geometries. The most extensive calculations of per-
meability obtained by solving the Navier-Stokes equa-
tions for a statistically representative porous medium
have been performed by Adler et al. [16,17]. They cal-
culated k values for computer generated fractal porous
media and model sandstones. As mentioned above, they
showed, somewhat surprisingly, that the simple Carman-
Kozeny equation yielded good agreement with numerical
values for the fractal medium. For their model sand-
stone the results differed from experimental values by a
factor of 5. Schwartz et al. [18] solved directly for the
flow in a number of model sphere packings. They com-
pared their numerical values for the permeability with
values obtained from the simple Carman-Kozeny equa-
tion. They also compared their results with theoretical
predictions obtained using other definitions of the length
scale proposed in the literature. The simple Carman-
Kozeny equation, where the length scale is the specific
surface area, was found to perform rather poorly when
compared to other methods.

In conclusion, there are several methods of attempt-
ing to calculate the permeability of porous media that
fall short of determining the detailed structure and then
solving for the flow. These basically fall into two cate-
gories: either simplifying the geometry and then solving
for the flow of the fluid or taking a realistic geometry
and then using a simplified technique for solving for the
flow. These approaches have been applied with varying
degrees of success. However, it is not obvious that any of
these approaches will work under all circumstances. Us-
ing modern techniques it is possible to use the more direct
approach of solving directly for the flow in a realistic rep-
resentation of the geometry [19,18] and thus avoid some
of the uncertainty associated with other approaches. We
illustrate this by presenting values of k determined nu-
merically for random arrays of spheres and a sample of a
clay soil. We also wish to establish the validity, or other-
wise, of the simple Carman-Kozeny equation for the two
random media. For the random spheres we may expect
that the equation does rather well, but for the soil sam-
ple with its much more complex topology, it is not clear
that the simple Carman-Kozeny approach is valid.
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NUMERICAL EVALUATION
OF THE PERMEABILITY

In order to solve the Navier-Stokes equations we use a
technique based on the lattice-Boltzmann equation. The
details of this approach are well documented elsewhere
[20,23]. Here we offer a brief summary in which we focus
on what we consider to be the advantages of applying
this technique to our problem. The basic idea of the
lattice-Boltzmann scheme is to simulate a lattice gas [24]
at the ensemble averaged level. A lattice gas consists of
a system of particles confined to move on a lattice. In
the Boltzmann approximation, the motion of individual
particles in the lattice gas is regarded as uncorrelated
and the quantity propagated is the ensemble averaged
occupancy f;(r,t). The following equation governs the
time evolution of f;(r,t):

fi(r7t+1) :fi(r’t)+Ai(f(r’t)) s (3)

where the collision term A; is a function of only the in-
put state. If the collision term is specified correctly then
the local fluid velocity u(r) and the density p(r) are so-
lutions of the Navier-Stokes equations. These quantities
are moments of the distribution, defined as

p(r,t) = Zfi(r’ t), (4)

p(r,t)u(r,t) = Zfi(r,t)ci ) (5)

where c; is the particle velocity. The specific form of
the collision term used in this work has been given by
Ladd [20]. Stick boundary conditions at the solid-fluid
interface are imposed by a simple bounce-back rule; for
any boundary link f; is reflected at half integer times.
A boundary link is defined as being a link connecting a
node inside the solid matrix to a node in the fluid. Using
this procedure we nominally locate the boundary as being
halfway along a lattice link.

The suggestion has often been made in the literature
that lattice-gas and lattice-Boltzmann equation tech-
niques should be powerful tools for studying flow in
porous media [21,22] because the complexity of the calcu-
lation is effectively independent of the complexity of the
matrix. As with all numerical techniques, the accuracy of
the solution that we obtain is limited by the resolution of
the grid used. However, the lattice-Boltzmann scheme is
also advantageous in that even with a very crude lattice,
where some areas of free space in the system consist of
only a handful of lattice nodes, quantitatively significant
numbers are still produced. We illustrate this in Table
I, where we have tabulated the mean flow velocity in a
tube, calculated using the lattice Boltzmann method, as
a function of the number of lattice nodes making up a
tube radius R. To get good accuracy the free space in
the system must indeed be represented by several nodes
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TABLE I. Ratio of the calculated mean flow velocity (u)
and the Poiseuille result (u)p for cylindrical tubes of radius
R (in lattice units).

R (w)/(uw)p
0.5 1.35
1.5 1.42
2.5 1.05
3.5 0.98
4.5 1.04
5.5 1.02

(R =~ 2.5). However, even with just one node we repro-
duce the Poiseuille result to within 35%.

In order to perform the calculation we need a map of
free space and solid matrix from which to compile a list
of boundary links. For the random array of spheres we
have used configurations generated by an isobaric Monte
Carlo simulation of an initially random configuration of
hard spheres, using periodic boundary conditions. For
the soil sample we read the solid-matrix map directly
from a segmented computed tomography (CT) image.
The image is that of a cylindrical sample, with radius
12.3 cm, of a young marine clay soil, sampled in the field
at a depth of 15-40 cm. 150 adjacent scans were taken,
starting 5 cm below the top and finishing 5 cm above the
bottom. The spacial resolution was 0.27 x 0.27 x 1.0 mm?3
and the images were reduced in size from 512% to 4522
pixels so as to only contain the soil region. Before the
image segmentation a 3 x 3 uniform filter per slice was
used, to remove noise, followed by a Sobel filter for edge
enhancement. The image was segmented into regions of
free space and solid, based on the gray values in the orig-
inal CT image. The high contrast difference between air
and clay allowed us to work directly with the bimodal
gray value distribution and segmentation was done by a
global thresholding technique. The bimodal gray value
distribution of the object and background densities were
approximated by two Gaussian distributions. A thresh-
old value equal to the mean gray value of the pore net-
work minus three standard deviations (of the pore net-
work) was used. Full details of the experiment and image
processing are given by Heijs et al. [25]. Having obtained
the segmented image, a cluster analysis was performed
to identify connected clusters, which we then consider to
make up the pore network. The data were found to con-
tain only one continuous pore network connecting the top
and bottom of the sample. It is on this single connected
pore that we perform the flow calculation. This type of
soil typically has a free volume fraction of about 40%.
The segmented CT image, however, has a free volume
fraction of only 12%. We can therefore estimate that
~ 28% of the total free space consists of pores with a
length scale smaller than our spacial resolution. Of the =~
12% of free space that we do identify, about one-quarter
belongs to the connected pore. So, for the purposes of
our calculation, the fluid flow through the sample occurs
in only ~ 4% of the total volume. We assume that the
remainder does not contribute to the permeability either
because it is disconnected or because the local perme-
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ability is negligible. In order to mimic a pore structure
percolating through an infinite medium, the simulation
box is repeated periodically using antiperiodic boundary
conditions. Antiperiodic (rather than periodic) bound-
ary conditions are needed to ensure that a pore is always
continued in the adjacent box.

In order to vary the image resolution we form larger
volume elements from the image by computing the free
volume present in N3 cubes. If this quantity exceeds one-
half of the volume of the new cube it is treated as free
space. Using this procedure we can lower the resolution
to N = 4 before we lose the connectivity of the pore
network. We also define a second resolution n, which
indicates that an n X n X n cube of nodes is used in the
lattice-Boltzmann simulation to represent each cube of
merged volume elements. While changing the value of
N effectively changes the detailed representation of the
medium, changing the value of n leaves the structure
unchanged, but affects the accuracy of the permeability
calculation.

RESULTS FOR THE RANDOM PACKING
OF SPHERES

The random packing of spheres we used consists of
1000 spheres at a solid volume fraction ¢ = 0.6. This
system size is large enough to effectively eliminate the
effects of the periodic boundary conditions [26]. We have
calculated the permeability as a function of the number of
lattice nodes making up a sphere radius. If we substitute
the value of S for an assembly of nonoverlapping spheres
with radius r into Eq. (2) we have

1—¢)3

ko) = G0 ©
In Table IT we tabulate the values of the Kozeny-constant
co, which we have calculated using Eq. (6). The val-
ues for k were determined using spheres of radii 2.5, 3.5,
and 4.5 lattice units. There are two points to note from
these results. First, the result for the smallest repre-
sentation of the sphere only differs from the result for
the largest by some 30%. The values that we obtain for
sphere radii of 3.5 and 4.5 differ only 5%. We there-
fore estimate that the result for the sphere of radius 4.5
lies within approximately 5% of the true value. As was
the case for Poiseuille flow, unless a high accuracy is re-
quired, a relatively crude representation of the solid-fluid
interface appears to suffice. Second, the best value we
obtain is consistent with the experimental observation
of Philipse and Pathmamanoharan [4], who found that

TABLE II. Values of the Kozeny constant co for the ran-
dom pack of spheres, as a function of the sphere radius (in
lattice units).

R Co

2.5 2.79
3.5 3.62
4.5 3.80
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the permeability of a dense colloidal hard sphere packing
was given, to within the experimental errors, by the sim-
ple Carman-Kozeny equation with co = 5. In a further
(more accurate) study of bidisperse packings of spheres
Thies-Weesie and Philipse calculated a value of ¢y = 3.9
+ 0.4, independent of the fraction of small spheres [5].
Our result ¢p = 3.8 is consistent with this value, so both
experiment and simulation suggest a small, but statisti-
cally significant, deviation of the Kozeny constant from
a value of 5.

RESULTS FOR THE SOIL SAMPLE

A visualization of the connected pore, present in the
soil sample, is shown in Fig. 1. The soil sample is in-
teresting not just because it is of practical importance,
but also in that it represents a rather different type of
porous medium than the random spheres. Whereas the
free space in the random spheres can be thought of as
a set of simple connected void spaces (a fact exploited
in many of the techniques for calculating the permeabil-
ity described earlier), here we have a single, but highly
complex, void space. The values of k that we have calcu-
lated for the soil sample, using various values of N and n,
are tabulated in Table III. Doubling the resolution of the
lattice (indicated by the value n = 2), while leaving the
image resolution unchanged, produces a change in the
calculated value of k of about 20% (see Table III). For
the higher resolution values (smaller N) the error should
be smaller because, by definition, we have more nodes
representing the areas of free space in the system. We
therefore estimate an upper limit of 20% on the errors
associated with the k values calculated at N = 2 and N
= 1. We wish to stress that these are estimates of the
error associated with the calculation of &k for a particular
representation of the pore structure. There is also an er-
ror in our calculated value of k that is due to the fact that
the CT image itself is an approximate representation of
the true pore structure. This error is more difficult to es-
timate and we have to assume that the resolution of the
CT image is sufficiently high for this error to be small.
In addition, it has not proved possible to perform the
calculation on the full image at a resolution of N = 1.
Instead we have calculated k separately for four sections,
each consisting of one-quarter of the full data set. We
have also performed this procedure for the N = 2 case,
where we can perform the calculation on the entire data
set for comparison. We see from the N = 2 data that the
permeability of the entire sample differs by less than 30%
from the average of the values for the four separate sec-
tions. Although there is no reason to assume that this is
the case in general, it appears to be a reasonable approx-
imation here. We believe our best estimate for the per-
meability to be the value we obtain by averaging the four
values obtained for N = 1, that is, £ = 1.5 x 10~% mm?2.
This compares with an experimental value [27] for this
type of soil of £k = 0.7 x 10™* mm?2. There is, however,
a considerable experimental uncertainty associated with
this value [28]. We note from the fact that the calculated
permeability decreases as we go from the N = 2 to the
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TABLE III. Values for the permeability of the soil sample (mm?). The value of N indicates the
size of the N cube of volume elements merged. The value of n indicates that an n X n x n cube
was used in the lattice-Boltzmann calculation to represent each (merged) volume element in the
image. The subscript zan indicates that the calculation was performed on the full data set. The
subscripts z1 (top), 22, 23, and z4 (bottom) indicate results obtained for subsamples consisting of
successive slabs of one-quarter of the full data set. k(. is the average of the permeability obtained

for these four slabs.

kzsu kzau kn kzz Kz, kz4 k(z)
N n=1 n=2 n=1 n=1 n=1 n=1 n=1
4 46x10°% 38x10°*%
2 2.0x10"* 1.8%x107% 1.6x107*% 1.0x10"* 45x107%* 22x107*
1 1.3%x107% 1.0x107* 05x%x107° 32x10"* 1.5x10*

N = 1 resolution that if we could solve for the flow in
an even higher resolution image, we would be likely to
see a further decrease in the permeability. This suggests
that our calculated value lies on the high side of the true
value. On the other hand, our assumption that flow only
occurs in the connected pore, when in reality there is also
a contribution due to flow in pores that is too small to
be detected in the CT scan, would result in an underes-
timate of the permeability. Despite this uncertainty, we
can at least conclude that our value for the permeabil-
ity is in general terms consistent with the experimental
value. In Fig. 1 we illustrate the flow fields, along with
the pore structure. The figure illustrates the complex-
ity of the pore structure and gives an indication of the
principal path by which the fluid flows through the pore
(red vectors). In areas of the pore that lie away from this
path there is very little flow, indicated by the blue and
purple vectors.

In Table IV we list values of the Kozeny constant.
These are calculated by using the values of k£ calculated
from the lattice Boltzmann simulation (Table III) and
values of ¢ and S calculated from the image. We see
that, unlike the case of the random spheres, the value
of the Kozeny constant is nowhere near the commonly
assigned value of 5. It is much smaller and a strong
function of the image resolution. We believe that this
behavior illustrates the point raised by Berryman and
Blair [9], namely, that the specific surface area obtained
from a high resolution image is not valid input to the
simple Carman-Kozeny equation. We would also like to
point out that our Carman-Kozeny calculation is more
sophisticated than may be typical. By this we mean that
we have already corrected for problems associated with

TABLE IV. Values of the Kozeny constant as a function
of the image resolution. For N = 4 and N = 2 the k value
obtained for the full data has been used. For N = 1 we have
used a value of k obtained by averaging the results for the
four successive slabs. We also tabulate the values of the free
volume fraction 1 — ¢ and the specific surface area S (mm)
calculated from the image.

N 1-— ¢ S Co

4 0.038 0.28 1.46
2 0.038 0.61 0.74
1 0.038 1.07 0.32

the connectivity. We have applied the simple Carman-
Kozeny equation only to the connected pore. If we did
not do this (as would be the case if, for instance, we had
analyzed a series of two-dimensional images) the values
of the Kozeny constant would have been even lower by
another factor of 4. As we discussed above, at any given
value of the image resolution N we estimate an upper
limit on the error in k of 20%. This then suggests that
the variation in the value of k that we observe at differ-
ent image resolutions is primarily a consequence of small
differences in the detailed representation of the medium.
It appears that the detailed structure of the pore, which
we include at the higher resolutions, is still influencing
the value of the permeability. The fact that the detailed
structure of the pore is still affecting the permeability,
but that the simple Carman-Kozeny equation is already
incorrect, suggests that for this type of structure the idea
of an “appropriate resolution” is not valid. From this we
conclude that the specific surface area cannot be consid-
ered to be an appropriate length scale, regardless of the
resolution, and that the simple Carman-Kozeny equation
is inappropriate for this type of porous medium.

DISCUSSION

We have used the lattice-Boltzmann equation tech-
nique to calculate the the permeability of a random array
of spheres. For this relatively simple system, good exper-
imental values of the permeability are available and our
calculation reproduces these results satisfactorally. Both
numerical and experimental results show that the sim-
ple Carman-Kozeny equation gives a good estimate of
the permeability, although a statistically significant dif-
ference exists.

Having determined the structure of a soil sample by
CT imaging, we have applied the same technique to cal-
culate the permeability of the soil. We made the addi-
tional assumption that fluid flow occurs through the only
continuous connected pore found in the sample and that
flow occurring at a smaller scale is negligible. This meant
that we only allowed the fluid to flow in a small fraction
of the total amount of the free space identified in the
sample. By varying the resolution of the image we found
that the permeability depended on the detailed structure
of the pore. Our best estimate of the permeability (ob-
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tained at the highest resolution) was, however, consistent
with an experimental value for this type of soil. When we
applied the simple Carman-Kozeny equation to the pore
image we found that it gave rather poor agreement with

the numerical values for the permeability and that this
discrepancy increased with increasing image resolution.
The fact that the resolution was affecting the numerical
value for the permeability, but that the simple Carman-

FIG. 1. Visualization of the pore structure in the clay soil (transparent gray). The vectors representing the velocity field are
color coded on the basis of their velocity component parallel to the mean flow direction u.. The mean flow direction is from
top to bottom, parallel to the bounding box. Positive components are color coded from light blue (u, = 0) to red (4. = Umax)-
Negative values of u, are colored purple. In order to give a clear representation of the flow field, the data have been subsampled.
The apparent lack of connectivity in the pore structure is merely a consequence of the subsampling.
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Kozeny equation was giving increasingly poor estimates
for the permeability, led us to conclude that, for this type
of porous medium, the specific surface area is an inap-
propriate length scale at any resolution.

There are several ways in which we should extend
this work. First, although we have applied the lattice-
Boltzmann-equation technique with apparent success,
there are other methods, such as those applied by Spanne
et al. [19] and Schwartz et al. [18], which have also been
used on similar problems. A direct comparison between
these methods would be useful—to determine whether
the lattice-Boltzmann-equation method is, or is not, the
most appropriate. Second, we have compared our numer-
ical results with only theoretical values obtained from the
simple Carman-Kozeny equation. It would be useful to
follow the example of Schwartz et al. [18] and Spanne
et al. [19] and test theoretical predictions that utilize a
length scale other than just the specific surface area.
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FIG. 1. Visualization of the pore structure in the clay soil (transparent gray). The vectors representing the velocity field are
color coded on the basis of their velocity component parallel to the mean flow direction u.. The mean flow direction is from
top to bottom, parallel to the bounding box. Positive components are color coded from light blue (u. = 0) to red (u: = Umax)-
Negative values of u, are colored purple. In order to give a clear representation of the flow field, the data have been subsampled.
The apparent lack of connectivity in the pore structure is merely a consequence of the subsampling.



